Locally Flat Imbeddings of Topological Manifolds

Author(s): Morton Brown
Source: Annals of Mathematics, Mar., 1962, Second Series, Vol. 75, No. 2 (Mar., 1962), pp. 331-341
Published by: Mathematics Department, Princeton University
Stable URL: https://www.jstor.org/stable/1970177

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

LOCALLY FLAT IMBEDDINGS OF TOPOLOGICAL MANIFOLDS

By Morton Brown*

(Received August 14, 1961)

I. Introduction

Let us say that a topological $(n-1)$-sphere Σ^{n-1} imbedded in the n sphere S^{n} is flat if there is a homeomorphism of S^{n} upon itself which carries Σ^{n-1} onto the equator S^{n-1} of S^{n}. The classical result of Schoenflies states that every Σ^{1} in S^{2} is flat. Antoine [1] and Alexander [3] exhibited imbeddings of Σ^{2} in S^{3} which are not flat. These examples can be modified to produce non-flat imbeddings of Σ^{n-1} in S^{n} for $n \geqq 3$. However, Alexander [2] proved that a sufficient condition for Σ^{2} to be flat in S^{3} is that it be a polyhedron (i.e., the union of a finite collection of convex cells).

In view of Alexander's theorem, let us define a compact subset X of S^{n} to be tame if there is a homeomorphism of S^{n} upon itself carrying X onto a polyhedron, semi-locally tame if there is a homeomorphism of a neighborhood of X into S^{n} carrying X onto a polyhedron, and locally tame if for each point $x \in X$ there is a neighborhood N_{x} of x in S^{n} and a homeomorphism of \bar{N}_{x} into S^{n} such that the image of $\bar{N}_{x} \cap X$ is a polyhedron. Moise [8] proved that a Σ^{2} in S^{3} is tame (and hence flat) if it is semi-locally tame. Bing [4](and independently Moise [9]) proved that Σ^{2} is semi-locally tame in S^{3} if it is locally tame.

For $n>4$ it is still unknown whether a tame Σ^{n-1} in S^{n} must be flat. (See however Newman [11] or Theorem 7 of this paper.) Recently, attempts to circumvent this barrier have been successful. Let us define a Σ^{n-1} in S^{n} to be $b i$-collared ${ }^{0}$ if there is a homeomorphism of some neighborhood of Σ^{n-1} into S^{n} carrying Σ^{n-1} onto the equator S^{n-1} of S^{n} and locally flat if for each point x of Σ^{n-1} there is a neighborhood N_{x} of x in S^{n} and a homeomorphism of N_{x} into S^{n} such that the image of $N_{x} \cap \Sigma^{n-1}$ lies in S^{n-1}. In 1959 Mazur [6] proved that a bi-collared Σ^{n-1} is flat if the defining homeomorphism is piecewise linear on some non-empty open set. An important consequence of Mazur's theorem is that a differentiably imbedded Σ^{n-1} in S^{n} is flat. Of equally great importance was the indication (in view of Mazur's elegant proof) that some important theorems in higher dimensions might be accessible by elementary techniques.

In 1960 Brown [5] proved that every bi-collared Σ^{n-1} in S^{n} is flat. Shortly

[^0]afterward Morse [10] succeeded in removing the hypothesis of piecewise linearity from Mazur's argument. One of the consequences of the results in this paper is that a locally flat Σ^{n-1} in S^{n} is bi-collared. The following diagram indicates the present status of affairs for Σ^{n-1} in S^{n}.

Statement of results. The main theorem of this paper is that a manifold with boundary has collared boundary (see §§ II; IV for definitions). From this we derive the result that a two-sided $(n-1)$-manifold imbedded in a locally flat fashion in an n-manifold is bi-collared. We also give a new proof (originally due to Newman [11]) that a combinatorial ($n-1$)sphere imbedded as a subcomplex of a combinatorial subdivision of the n-sphere is flat.

The author is indebted to E. A. Michael for numerous helpful discussions. In fact, many aspects of the formulation and proof of Theorem 1 in its present generality are the result of joint work.

II. Collared subsets

Let X be a topological space and B a subset of X. Then B is collared in X if there is a homeomorphism h carrying $B \times I^{\prime 1}$ onto a neighborhood ${ }^{2}$ of B such that $h(b, 0)=b$ for all $b \in B^{3}$. If B can be covered by a collection of open subsets (relative to B) each of which is collared in X, then B is locally collared in X. (The most important example of a locally collared subset is the case where B is the boundary of a manifold with boundary.) If there is a homeomorphism h carrying $B \times(-1,1)$ onto a neighborhood of B such that $h(b, 0)=b$ for all $b \in B$, then B is bi-collared in $X .^{3}$ Similarly, B is locally bi-collared in X if B can be covered by a collection of bi-collared open subsets. (The unit $(n-1)$-sphere of E^{n} is bi-collared in E^{n}. On the other hand the central circle of a Möbius band is locally bi-collared but not bi-collared.)

Lemma 0. Let B be a subset of a topological space X. A necessary and sufficient condition for B to be collared in X is that every homeomorphism $g: B \rightarrow \rightarrow B^{4}$ can be "extended"' to homeomorphism \bar{g} of $B \times I$ ' onto

[^1]a neighborhood of B in X such that $\bar{g}(b, 0)=g(b)$ for each $b \in B .{ }^{5}$
Proof. The proof of sufficiency is trivial, for we may take g to be the identity map. Suppose, on the other hand, that B is collared in X and $g: B \rightarrow \rightarrow B$ is a homeomorphism. By hypothesis there is a homeomorphism h of $B \times I^{\prime}$ onto a neighborhood of B such that $h(b, 0)=b, b \in B$. Let $g^{*}: B \times I^{\prime} \rightarrow \rightarrow B \times I^{\prime}$ be the homeomorphism defined by $g^{*}(b, t)=(g(b), t)$, and let $\bar{g}: B \times I^{\prime} \rightarrow X$ be defined by $\bar{g}=h g^{*}$. Then \bar{g} is a homeomorphism of $B \times I^{\prime}$ onto a neighborhood of B (i.e., $h\left(B \times I^{\prime}\right)$) and
$$
\bar{g}(b, 0)=h g^{*}(b, 0)=h(g(b), 0)=g(b)
$$

In the next lemma we show that if a homeomorphism of $B \times 0$ into X can be extended to neighborbood of $B \times 0$ in $B \times I^{\prime}$, then it can be extended to $B \times I^{\prime}$.

Lemma 1. Let B, X be metric spaces, and N a neighborhood of $B \times 0$ in $B \times I^{\prime}$. Suppose $h: N \rightarrow X$ is a homeomorphism of N onto a neighborhood of $h(B \times 0)$ in X. Then there is a homeomorphism $h^{\prime}: B \times I^{\prime} \rightarrow X$ such that $h^{\prime}|B \times 0=h| B \times 0$ and $h^{\prime}\left(B \times I^{\prime}\right)$ is a neighborhood of $h(B \times 0)$.

Proof. Let d be a metric for B such that under d the diameter of B is less than 1. Let D be the metric for $B \times I^{\prime}$ defined by $D\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right)=$ $\max \left(d\left(x, x^{\prime}\right),\left|t-t^{\prime}\right|\right)$. For $b \in B$ let $g(b)=D\left(b,\left(B \times I^{\prime}\right)-N\right)$. Then g is a continuous positive real valued function on B, and for all $b \in B$ we have $g(b)<1$. Let $\Gamma: B \times I^{\prime} \rightarrow N$ be the homeomorphism defined by $\Gamma(b, t)=(b, t g(b))$, and let $h^{\prime}=h \Gamma$.

III. Spindle neighborhoods

Suppose $Z=B \times I^{\prime}$ where B is a metric space. Let U be an open subset of B and $\lambda: \bar{U} \rightarrow[0,1]$ a map 6 such that $\lambda(x)=0$ if and only if $x \in \bar{U}-U$. We define the spindle neighborhood $S(U, \lambda)$ by:

$$
S(U, \lambda)=\left\{(x, t) \in B \times I^{\prime} \mid(x, 0) \in U, t<\lambda(x)\right\} .
$$

It is easily seen that $S(U, \lambda)$ is a neighborbood of $U \times 0$ in $B \times I^{\prime}$, and that the spindle neighborhoods form a neighborhood basis for $U \times 0$ in $B \times I^{\prime}$. For, suppose O is an open subset of $B \times I^{\prime}$ containing $U \times 0$. Let D be the metric for $B \times I^{\prime}$ defined in the proof of Lemma 1. For $x \in U$ let $\lambda(x)=\min \left[D(x, \bar{U}-U), D\left(x,\left(B \times I^{\prime}\right)-O\right)\right]$. Then $S(U, \lambda) \subset O$.

The map $\pi_{S(J, \lambda)}$. Suppose $S(U, \lambda)$ is defined as above. We define a map $\pi_{s(\sigma, \lambda)}: B \times I^{\prime} \rightarrow B \times I^{\prime}$ by

[^2]\[

\pi(x, t)=\left\{$$
\begin{array}{lr}
(x, t), & (x, t) \notin S(U, \lambda) \\
(x, 0), & (x, t) \in S\left(U, \frac{\lambda}{2}\right)^{7} \\
(x, 2 t-\lambda(x)), & (x, t) \in S(U, \lambda)-S\left(U, \frac{\lambda}{2}\right)
\end{array}
$$\right.
\]

See Figure 1. In words, π is the identity on the complement of $S(U, \lambda)$, collapses $S(U,(\lambda / 2))$ "vertically" onto $U \times 0$, and carries the interval $[(x,(\lambda / 2)(x)),(x, \lambda(x))]$ linearly onto $[(x, 0),(x, \lambda(x))]$ for each x in U. Note that π maps $B \times I^{\prime}-S(U,(\lambda / 2))$ homeomorphically onto $B \times I^{\prime}$.

Figure 1
Lemma 2. Let U be an open subset of the metric space B, N a neighborhood of $U \times 0$ in $B \times I^{\prime}$, and f a homeomorphism of \bar{N} onto the closure of a neighborhood of $U \times 0$ such that $f \mid \bar{U} \times 0=1$. Then there is a homeomorphism $f^{\prime}: \bar{N} \rightarrow B \times I^{\prime}$ and a neighborhood V of $U \times 0$ in N such that
(2.1) $f^{\prime}|(\bar{N}-N)=f|(\bar{N}-N)$,
(2.2) $f^{\prime}(\bar{N})=f(\bar{N})$,
(2.3) $f^{\prime} \mid V=1$.

Proof. (See Figure 2). Let $S(U, \lambda)$ be a spindle neighborhood of $U \times 0$ such that $S(U, \lambda) \subset N \cap f(N)$. Let π be the associated mapping $\pi_{s(0, \lambda)}$ and let $f^{\prime}: \bar{N} \rightarrow B \times I^{\prime}$ be defined by

$$
f^{\prime}(x)=\left\{\begin{array}{lr}
x, & x \in \overline{S\left(U, \frac{\lambda}{2}\right)} \\
\pi^{-1} f \pi(x), & x \in \bar{N}-S\left(U, \frac{\lambda}{2}\right)
\end{array}\right.
$$

(2.4) $\pi^{-1} f \pi$ is well defined on $\bar{N}-S(U,(\lambda / 2))$ and carries it homeomorphically onto $f(\bar{N})-S(U,(\lambda / 2))$. First notice that π carries $\bar{N}-S(U,(\lambda / 2))$ homeomorphically onto \bar{N}. In turn, f carries \bar{N} homeomorphically onto $f(\bar{N})$. Now π^{-1} carries $B \times I^{\prime}$ homeomorphically onto $B \times I^{\prime}-S(U,(\lambda / 2))$ and is the identity on the complement of $S(U, \lambda)$.

[^3]Since $S(U, \lambda) \subset f(\bar{N}), \pi^{-1}$ carries $f(\bar{N})$ homeomorphically onto

$$
f(\bar{N})-S(U,(\lambda / 2)) .
$$

(2.5) f^{\prime} is a well defined map. Suppose $y \in \overline{S(U,(\lambda / 2))} \cap(\bar{N}-S(U,(\lambda / 2))=$ $(\bar{U}-U) \cup\{(x, t) \mid x \in U, t=(\lambda / 2)(x)\}$. If $y \in \bar{U}-U, \pi^{-1} f \pi(y)=y$ since π and f are the identity on $\bar{U}-U$. Suppose $y=(x,(\lambda / 2)(x)), x \in U$. Then

$$
\pi^{-1} f \pi(y)=\pi^{-1} f \pi\left(x, \frac{\lambda}{2}(x)\right)=\pi^{-1} f(x, 0)=\pi^{-1}(x, 0)=\left(x, \frac{\lambda}{2}(x)\right)=y .
$$

(2.6) f^{\prime} is a homeomorphism. It is evident from (2.4) and the definition of f^{\prime} that f^{\prime} is $1-1$. On the other hand $f^{\prime}\left(\bar{N}-S(U,(\lambda / 2))\right.$ and $f^{\prime} \overline{(S(U,(\lambda / 2))}$ are closed subsets of $f^{\prime}(\bar{N})$. Finally, f^{\prime} is a homeomorphism on each of its domains of definition.
Evidently (2.2) is satisfied. Choosing $V=S(U,(\lambda / 2))$ we see that (2.3) is satisfied. Finally, let $y \in \bar{N}-N$. Since $S(U, \lambda) \subset N \cap f(N)$, neither y nor $f(y)$ is in $S(U, \lambda)$. Furthermore π is the identity on the complement of $S(U, \lambda)$. Hence

$$
f^{\prime}(y)=\pi^{-1} f \pi(y)=\pi^{-1} f(y)=f(y) .
$$

This completes the proof of Lemma 2.

Figure 2
Lemma 3. Let X, B be metric spaces and $h: B \rightarrow X$ a homeomorphism. Suppose U_{1}, U_{2} are open subsets of B, K is a closed (subset relative to B) of $U_{1} \cap U_{2}$, and $U_{1} \cup U_{2}=B$. Suppose also that for $i=1,2, h \mid U_{i}$ can be extended to a homeomorphism h_{i} of $U_{i} \times I^{\prime}$ onto a neighborhood of $h\left(U_{i}\right)$ in X such that $h_{i}\left|U_{i} \times 0=h\right| U_{i}$. Then there is a homeomorphism $h_{2}^{\prime}: U_{2} \times I^{\prime} \rightarrow \rightarrow h_{2}\left(U_{2} \times I^{\prime}\right)$ such that $h_{2}^{\prime}\left|U_{2} \times 0=h\right| U_{2}$ and $h_{2}^{\prime}\left|V=h_{1}\right| V$ for some neighborhood V of $K \times 0$ in $\left(U_{1} \cap U_{2}\right) \times I^{\prime}$. (See Figure 3).

Proof. Let U be an open subset of $U_{1} \cap U_{2}$ such that $K \subset U \subset \bar{U} \subset U_{1} \cap U_{2}$. Then there is a spindle neighborhood N of $U \times 0$ in $B \times I^{\prime}$ such that $\bar{N} \subset h_{2}^{-1}\left(h_{1}\left(U_{1} \times I^{\prime}\right) \cap h_{2}\left(U_{2} \times I^{\prime}\right)\right)$. Hence the map $f: \bar{N} \rightarrow B \times I^{\prime}$ defined by $f(y)=h_{1}^{-1} h_{2}(y)$ is a well defined homeomorphism, $f \mid \bar{U} \times 0=1$ and $f(N)$ is open in $B \times I^{\prime}$. Applying Lemma 2 we obtain a homeomorphism $f^{\prime}: \bar{N} \rightarrow$ $B \times I^{\prime}$ and a neighborhood V of $U \times 0^{8}$ such that:

[^4](3.1) $f^{\prime}|(\bar{N}-N)=f|(\bar{N}-N)$,
(3.2) $f^{\prime}(\bar{N})=f(\bar{N})$,
(3.3) $f^{\prime} \mid V=1$.

Define $h_{2}^{\prime}: U_{2} \times I^{\prime} \rightarrow X$ by

$$
h_{2}^{\prime}(x)= \begin{cases}h_{1} f^{\prime}(x), & x \in \bar{N} \cap\left(U_{2} \times I^{\prime}\right) \tag{3.4}\\ h_{2}(x), & x \in\left(U_{2} \times I^{\prime}\right)-N\end{cases}
$$

Observe that h_{2}^{\prime} is a homeomorphism on each of the domains of definition and that the domains are closed in $U_{2} \times I^{\prime}$.
(3.5) h_{2}^{\prime} is well defined. Suppose $x \in\left[\bar{N} \cap\left(U_{2} \times I^{\prime}\right)\right] \cap\left[\left(U_{2} \times I^{\prime}\right)-N\right]=$ $(\bar{N}-N) \cap\left(U_{2} \times I^{\prime}\right)$. Then since $x \in \bar{N}-N, h_{1} f^{\prime}(x)=h_{1} f(x)=h_{1} h_{1}^{-1} h_{2}(x)=$ $h_{2}(x)$.

$$
\begin{align*}
h_{2}^{\prime}\left(\bar{N} \cap\left(U_{2} \times I^{\prime}\right)\right) & =h_{2}\left(\bar{N} \cap\left(U_{2} \times I^{\prime}\right)\right) . \\
h_{2}^{\prime}\left(\bar{N} \cap\left(U_{2} \times I^{\prime}\right)\right) & =h_{1} f^{\prime}\left(\bar{N} \cap\left(U_{2} \times I^{\prime}\right)\right), \\
& =h_{1} f\left(\bar{N} \cap\left(U_{2} \times I^{\prime}\right)\right), \tag{3.6}\\
& =h_{1} h_{1}^{-1} h_{2}\left(\bar{N} \cap\left(U_{2} \times I^{\prime}\right)\right), \\
& =h_{2}\left(\bar{N} \cap\left(U_{2} \times I^{\prime}\right)\right) .
\end{align*}
$$

(3.7) h_{2}^{\prime} is a homeomorphism. If follows from (3.6) and (3.4) that

$$
h_{2}^{\prime}\left(\bar{N} \cap\left(U_{2} \times I^{\prime}\right)\right) \cap h_{2}^{\prime}\left(\left(U_{2} \times I^{\prime}\right)-N\right)=h_{2}\left(\bar{N} \cap\left(U_{2} \times I^{\prime}\right) \cap h_{2}\left(\left(U_{2} \times I^{\prime}\right)-N\right)=0\right.
$$

Hence h_{2}^{\prime} is $1-1$. On the other hand the image of each domain is closed in $h_{2}^{\prime}\left(U_{2} \times I^{\prime}\right)$ (again by (3.6) and (3.4) and the fact that h_{2}^{\prime} is a homeomorphism on each domain.

Suppose $x \in V$. Then since $f^{\prime} \mid V=1, h_{2}^{\prime}(x)=h_{1} f^{\prime}(x)=h_{1}(x)$. Finally, suppose $x \in U_{2}$. If $(x, 0) \notin N$ then $h_{2}^{\prime}(x, 0)=h_{2}(x, 0)=h(x)$. If $(x, 0) \in N$ then, since N is a spindle neighborhood of $U \times 0,(x, 0) \in V$. Hence $h_{2}^{\prime}(x, 0)=h_{1} f^{\prime}(x, 0)=h_{1}(x, 0)=h(x)$.

Figure 3
Lemma 4. Let B be a subset of a metric space X. Suppose $B=U_{1} \cup U_{2}$ where U_{1}, U_{2} are open in B and $U_{1} \cap U_{2} \neq 0$. If both of U_{1}, U_{2} are col-
lared in X then B is collared in X.
Proof. Since B is a normal space there are open subsets O_{1}, O_{2} of B such that $\bar{O}_{1} \subset U_{1}, \bar{O}_{2} \subset U_{2}$ and $B=O_{1} \cup O_{2}$. Let $K=\bar{O}_{1} \cap \bar{O}_{2}$. Then K is a closed subset rel B of $U_{1} \cap U_{2}$. By the hypothesis there exist homeomorphisms $h_{i}(i=1,2)$ of $U_{i} \times I^{\prime}$ onto a neighborhood of U_{i} in X such that $h_{i}(b, 0)=b, b \in U_{i}$. Applying Lemma 3 (with h the identity map) we get a homeomorphism $h_{2}^{\prime}: U_{2} \times I^{\prime} \rightarrow \rightarrow h_{2}\left(U_{2} \times I^{\prime}\right)$ and a neighborhood V of $K \times 0$ in $\left(U_{1} \cap U_{2}\right) \times I^{\prime}$ such that $h_{2}^{\prime}\left|V=h_{1}\right| V$ and $h_{2}^{\prime} \mid U_{2} \times 0=$ $h_{2} \mid U_{2} \times 0$.

Obviously ($O_{1}-O_{2}$) $\cap \overline{O_{2}-O_{1}}=\overline{O_{1}-O_{2}} \cap\left(O_{2}-O_{1}\right)=0$, i.e., $O_{1}-O_{2}$ and $O_{2}-O_{1}$ are completely separated in X. Since X is a metric space there exist disjoint open subsets W_{1}, W_{2} of X such that

$$
\begin{aligned}
& O_{1}-O_{2} \subset W_{1} \subset h_{1}\left(U_{1} \times I^{\prime}\right) \\
& O_{2}-O_{1} \subset W_{2} \subset h_{2}^{\prime}\left(U_{2} \times I^{\prime}\right) .
\end{aligned}
$$

Let V_{1}, V_{2} be spindle neighborhoods of $\left(O_{1}-\bar{O}_{2}\right) \times 0,\left(O_{2}-\bar{O}_{1}\right) \times 0$ respectively such that $h_{1}\left(V_{1}\right) \subset W_{1}, h_{2}^{\prime}\left(V_{2}\right) \subset W_{2}$. Then V_{i} is open in $B \times I^{\prime}$, $h\left(V_{1}\right) \cap h_{2}^{\prime}\left(V_{2}\right)=0$, and $B \times 0 \subset V_{1} \cup V_{2} \cup V$. Let $f: V_{1} \cup V_{2} \cup V \rightarrow X$ be defined by

$$
f(x)= \begin{cases}h_{1}(x), & x \in V_{1}, \\ h_{2}^{\prime}(x), & x \in V_{2}, \\ h_{1}(x)=h_{2}^{\prime}(x), & x \in V .\end{cases}
$$

Clearly f is a well defined homeomorphism and $f(b, 0)=b, b \in B$. Note that $V_{1} \cup V_{2} \cup V$ is a neighborhood of $B \times 0$ in $B \times I^{\prime}$. For $V_{1} \supset\left(O_{1}-\bar{O}_{2}\right) \times 0$, $V_{2} \supset\left(O_{2}-\bar{O}_{1}\right) \times \cup \therefore$ d $V \supset\left(\bar{O}_{1} \cap \bar{O}_{2}\right) \times 0$. In view of Lemma 1 the proof is complete.

We are now in a position to prove the main result of this section.
Theorem 1. A locally collared subset of a metric space is collared.
Proof. Suppose B is a locally collared subset of the metric space X. Let us say that an open subset of B has property C if it is collared in X.
(i) C is hereditary, i.e., if U has property C and V is an open subset of U then V has property C .

If V is empty it has property C by definition. Suppose $V \neq 0$. Then $U \neq 0$, and there is a homeomorphism h_{u} of $U \times I^{\prime}$ onto a neighborhood of U in X such that $h_{u}(x, 0)=x, x \in U$. Let $h_{v}=h_{u} \mid V \times I^{\prime}$.
(ii) C is closed under disjoint union, i.e., if $\left\{U_{\alpha}\right\}_{\alpha \in A}$ is a pairwise disjoint collection of open subsets of B each having property C , then $\mathrm{U}_{\alpha \in A}\left\{U_{\alpha}\right\}$ has property C .
Suppose h_{α} is the homeomorphism of $U_{\alpha} \times I^{\prime}$ onto a neighborhood of U_{α} in X such that $h_{\alpha}(x, 0)=x, x \in U_{\alpha}$. Since X is a metric space there is a
pairwise disjoint collection $\left\{W_{\alpha}\right\}_{\alpha \in A}$ of open subsets of X such that $U_{\alpha} \subset W_{\alpha} \subset h_{\alpha}\left(U_{\alpha} \times I^{\prime}\right), \alpha \in A .{ }^{9}$ Let $O=\mathrm{U}_{\alpha \in \mathrm{A}} h_{\alpha}^{-1}\left(W_{\alpha}\right)$. Then O is an open subset of $B \times I^{\prime}$ and $O \supset \bigcup_{a \in \mathcal{A}}\left\{U_{a} \times 0\right\}$. Let $h: O \rightarrow X$ be the homeomorphism defined by $h\left|\left(U_{\alpha} \times I^{\prime}\right) \cap O=h_{\alpha}\right|\left(U_{\alpha} \times I^{\prime}\right) \cap O$. In view of Lemma $1, \bigcup_{a \in \Lambda}\left\{U_{\alpha}\right\}$ is collared.
(iii) Suppose U_{1}, U_{2} are open subsets of B each having property C. Then $U_{1} \cup U_{2}$ has property C.
If $U_{1} \cap U_{2}=0$, (iii) is a consequence of (ii).
If $U_{1} \cap U_{2} \neq 0$, (iii) is a consequence of Lemma 4.
In a metric space, a property of open sets satisfying conditions (i)-(iii), and which is satisfied locally, is possessed by all open subsets [7]. In particular, B itself has property C. This completes the proof of Theorem 1.

The following is a restatement of Theorem 1 into a theorem about extensions of homeomorphisms (cf. Lemma 0).

Corollary. Let $X, B, B \times I^{\prime}$ be metric spaces and $h: B \times 0 \rightarrow X$ be a homeomorphism. Suppose B can be covered by a collection of open subsets $\left\{U_{\alpha}\right\}_{\alpha \in \Lambda}$ such that for each $\alpha \in A, h \mid U_{\alpha} \times 0$ has a homeomorphic extension h_{α} mapping $U_{\alpha} \times I^{\prime}$ onto a neighborhood of $h\left(U_{\alpha} \times 0\right)$. Then h has a homeomorphic extension mapping $B \times I^{\prime}$ onto a neighborhood of $h(B \times 0)$.

IV. Applications to manifolds

An n-manifold with boundary is a connected metrizable topological space such that each point has a closed neighborhood homeomorphic to an n-cell. As usual the boundary consists of the subset of points which do not have (open) neighborhoods homeomorphic to E^{n}. If the boundary is empty, the manifold with boundary will be called a manifold. Suppose X is an n-manifold, and B is a subset of X which is an r-manifold under the relative topology. Then B is an r-submanifold of X. Suppose, in particular, that $r=n-1$. Then B is two-sided in X if there is a connected neighborhood N of B which is separated by $B .{ }^{10}$ Finally B is locally flat in X if for each point $b \in B$ there is a neighborhood N_{b} of b in X and a homeomorphism $h_{b}: N_{b} \rightarrow E^{n}$ such that $h_{b}\left(N_{b} \cap B\right) \subset E^{n-1} \subset E^{n}$.

Remark. In the definition of locally flat there is no loss of generality in requiring that $h_{b}\left(N_{b}\right)=E^{n}$ and $h_{b}\left(N_{b} \cap B\right)=E^{n-1}$. The definition is equivalent to that given in § I. The following two lemmas are easily established, and we state them without proof.

Lemma 5. The boundary of an n-manifold with boundary is locally

[^5]collared.
Lemma 6. A submanifold B^{n-1} of a manifold X^{n} is locally fat in X^{n} if and only if it is locally bi-collared in X^{n}.

Theorem 2. The boundary of an n-manifold with boundary is collared. This follows directly from Theorem 1 and Lemma 5.
Theorem 3. Let B^{n-1} be a locally flat two-sided $(n-1)$-submanifold of a manifold X^{n}. Then B^{n-1} is bi-collared in X^{n}.

Proof. Let N be a connected neighborhood of B in X which is separated by B, and let Q, R be the components of $N-B .{ }^{10}$ Since B is locally flat in $N, Q \cup B$ and $R \cup B$ are manifolds with boundary B. It follows from Theorem 2 that B is collared in each. Hence B is bi-collared in X.

Remark. The case of a one sided manifold will be treated in a forthcoming paper by E.A.Michael.

Theorem 4. Let Σ^{n-1} be locally fat in S^{n}. Then Σ^{n-1} is flat in S^{n}.
Proof. This follows from Theorem 3 above and Theorem 5 of [5].

V. Applications to polyhedral manifolds

Definitions. ${ }^{11}$ A 0 -star sphere Σ^{0} is a pair of points. A 0 -star cell g^{0} is a single point. For $n>0$ an n-star sphere $\sum^{n}\left(n\right.$-star cell $\left.\mathcal{J}^{n}\right)$ is a finite complex homeomorphic to the n-sphere $S^{n}\left(n\right.$-cell $\left.I^{n}\right)$ and such that the link ${ }^{12}$ of each vertex is a $\sum^{n-1}\left(\Sigma^{n-1}\right.$ or $\left.\mathfrak{J}^{n-1}\right)$. An n-star manifold M^{n} (manifold with boundary N^{n}) is a locally finite complex such that the link of each vertex is a $\Sigma^{n-1}\left(\Sigma^{n-1}\right.$ or $\left.\mathcal{J}^{n-1}\right)$. A 0 -star manifold (manifold with boundary) is an even (odd) numbered set of points.
A combinatorial n-cell $I^{n}\left(n\right.$-sphere $\left.S^{n}\right)$ is a finite complex which has a linear subdivision isomorphic to some linear subdivision of an n-simplex (the boundary of an ($n+1$)-simplex). A combinatorial n-manifold (n manifold with boundary) is a locally finite complex such that the link of each vertex is an $S^{n-1}\left(S^{n-1}\right.$ or $\left.I^{n-1}\right)$.

Remark. The reader is referred to [11] for a more complete discussion of star manifolds. Combinatorial manifolds are special cases of star manifolds. If every combinatorial manifold homeomorphic to an n-sphere is a combinatorial n-sphere (and this has been proved for $n \neq 4,5,7$ by Smale [12]), then all n-star spheres are combinatorial n-spheres). Unfortunately, the only proof we know of this implication requires induction on n; hence even with Smale's result, n-star spheres are known to be combinatorial

[^6]spheres only for $n \geqq 3$ (and combinatorial manifolds for $n \geqq 4$).
Theorem 5. Let M^{n-1} be an $(n-1)$-star manifold imbedded as a subcomplex of an n-star manifold M^{n}. Then M^{n-1} is locally flat in M^{n}.

Proof. The theorem is evidently true for $n=1$. Inductively, suppose we have proven the theorem for $n=k$. Let M^{k} be a k-star manifold imbedded as a subcomplex of the $(k+1)$-star manifold M^{k+1}. Let v be a vertex of M^{k}. Then $\mathrm{lk}\left(v, M^{k}\right)$ is a Σ^{k-1} imbedded as a subcomplex of $\mathrm{lk}\left(v, M^{k+1}\right)$ which is a Σ^{k}. By the induction hypothesis $\operatorname{lk}\left(v, M^{k}\right)$ is locally flat in $\operatorname{lk}\left(v, M^{k+1}\right)$. Applying Theorem 4 we obtain a homeomorphism $h: \operatorname{lk}\left(v, M^{k+1}\right) \rightarrow \rightarrow S^{k}$ such that $h\left(\mathrm{lk}\left(v, M^{k}\right)\right)$ is the equator S^{k-1} of S^{k}. We may think of S^{k} as the unit sphere of E^{k+1} with S^{k-1} in the hyperplane E^{k}. Since $\operatorname{St}\left(v, M^{k+1}\right)^{12}$ is the join of v and $\mathrm{lk}\left(v, M^{k+1}\right)$ and, since the unit ball B^{k+1} is the join of the origin and S^{k}, h can be extended in the obvious way to a homeomorphism $\bar{h}: \operatorname{St}\left(v, M^{k+1}\right) \rightarrow \rightarrow B^{k+1}$. Furthermore, $\operatorname{St}\left(v, M^{k}\right)$ is the join of v with $\operatorname{lk}\left(v, M^{k}\right)$. Hence $\bar{h}\left(\operatorname{St}\left(v, M^{k}\right)\right) \subset E^{k}$. Since each point of M^{k} lies in the interior of the star of some vertex of M^{k} we have established that M^{k} is locally flat in M^{k+1}. The following theorem is an immediate consequence of Theorem 5 and Theorem 3.
Throrem 6. Let M^{n-1} be an $(n-1)$-star manifold imbedded as a 2sided subcomplex of an n-star manifold M^{n}. Then M^{n-1} is bi-collared in M^{n}.

Theorem 7. (Newman). Let Σ^{n-1} be an $(n-1)$-star sphere imbedded as a subcomplex of an n-star triangulation of the n-sphere S^{n}. Then Σ^{n-1} is flat in S^{n}.

Question. Suppose K is bi-collared ($n-1$)-polyhedron in E^{n}. Is K a manifold? The answer is affirmative if and only if the link of every vertex in a triangulated n-manifold is an $(n-1)$-manifold. A negative answer would give a counter example to a very weak form of the Hauptvermutung for spheres.

University of Michigan and Institute for Advanced Study

References

1. L. Antoine, Sur l'homeomorphie de deux figures et de leurs voisinages, J. Math. Pures. Appl., 86 (1921), 221-235.
2. J. W. Alexander, On the subdivision of 3 -space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A., 10 (1924), 6-8.
3. -_, An example of a simply connected surface bounding a region which is not simply connected, Proc. Nat. Acad. Sci. U.S.A., 10 (1924), 8-10.
4. R. H. Bing, Locally tame sets are tame, Ann. of Math., 59 (1954), 145-158.
5. M. Brown, A proof of the generalized Schoen fies theorem, Bull. Amer. Math., Soc., 66 (1960), 74-76.
6. B. Mazur, On imbeddings of spheres, Bull. Amer. Math Soc., 65 (1959), 59-65.
7. E.A. Michael, Local properties of topological spaces, Duke Math. J., 21 (1954), 163-171.
8. E. E. Moise, Affine structures in 3-manifolds (V), Ann. of Math., 56 (1952), 96-114.
9. -, Affine structures in 3-manifolds (VIII), Ann. of Math., 59 (1954), 159-170.
10. M. Morse, A reduction of the Schoenfies extension problem, Bull, Amer. Math. Soc., 66 (1960), 113-115.
11. M. Newman, On the division of euclidean n-space by topological $n-1$ spheres, Proc. Royal Soc. London, 257 (1960), 1-12.
12. S. Smale, Differentiable and combinatorial structures on manifolds, Ann. of Math., 74 (1960), 498-502.

[^0]: * The author holds a National Science Foundation Fellowship.

 0 Mazur calls this "collared". It is also referred to as the "shell hypothesis". We prefer to reserve the term collar for the one sided case.

[^1]: ${ }^{1} I^{\prime}$ denotes the sect [01).
 ${ }^{2}$ All neighborhoods will be open.
 ${ }^{3}$ The emply set will be considered to be both collared and bicollared.
 4 " $\rightarrow \rightarrow$ " means 'onto".

[^2]: ${ }^{5}$ A Similar argument proves the corresponding theorem for the bi-collared case.
 ${ }^{6} \mathrm{~A}$ "map" is a continuous function.

[^3]: ${ }^{7}(\lambda / 2)$ is defined by $(\lambda / 2)(x)=(1 / 2) \lambda(x)$.

[^4]: ${ }^{8} \mathrm{~V}$ can be chosen as a subset of $\left(U_{1} \cap U_{2}\right) \times I^{\prime}$.

[^5]: ${ }^{9}$ Let $W_{\alpha}=h_{\alpha}\left(U_{\alpha} \times I^{\prime}\right) \cap\left\{x \in X \mid D\left(x, U_{\alpha}\right)<D\left(x, U_{\beta \neq \alpha} U_{\beta}\right)\right\}$.
 ${ }^{10}$ In this case $N-B$ has two components.

[^6]: ${ }^{11}$ These definitions are due to Newman [11].
 ${ }^{12}$ The link of a vertex v in a complex K consists of the union of the closed simplexes σ of K not containing v but such that the join of v and σ is a simplex of K. We denote it by $\mathrm{lk}(v, K) . \operatorname{St}(v, K) \equiv \operatorname{star}$ of v in K is the join of v with $\mathrm{lk}(v, K)$.

