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 332 MORTON BROWN

 afterward Morse [10] succeeded in removing the hypothesis of piecewise

 linearity from Mazur's argument. One of the consequences of the results
 in this paper is that a locally flat En-' in S" is bi-collared. The following

 diagram indicates the present status of affairs for En-l in S".

 FLAT TAME

 It I
 BI-COLLARED SEMI-LOCALLY TAME

 i t I
 LOCALLY FLAT LOCALLY TAME

 Statement of results. The main theorem of this paper is that a mani-

 fold with boundary has collared boundary (see ?? II; IV for definitions).

 From this we derive the result that a two-sided (n - 1)-manifold imbed-

 ded in a locally flat fashion in an n-manifold is bi-collared. We also give
 a new proof (originally due to Newman [11]) that a combinatorial (n-i)-
 sphere imbedded as a subcomplex of a combinatorial subdivision of the
 n-sphere is flat.

 The author is indebted to E. A. Michael for numerous helpful discus-

 sions. In fact, many aspects of the formulation and proof of Theorem 1

 in its present generality are the result of joint work.

 11. Collared subsets

 Let X be a topological space and B a subset of X. Then B is collared

 in X if there is a homeomorphism h carrying B x I" onto a neighborhood'

 of B such that h(b, 0) = b for all b e B3. If B can be covered by a collec-

 tion of open subsets (relative to B) each of which is collared in X, then B
 is locally collared in X. (The most important example of a locally col-

 lared subset is the case where B is the boundary of a manifold with bound-

 ary.) If there is a homeomorphism h carrying B x (-1, 1) onto a
 neighborhood of B such that h(b, 0) = b for all b e B, then B is bi-collared
 in X.3 Similarly, B is locally bi-collared in X if B can be covered by a

 collection of bi-collared open subsets. (The unit (n - 1)-sphere of En is
 bi-collared in E". On the other hand the central circle of a M6bius band

 is locally bi-collared but not bi-collared.)

 LEMMA 0. Let B be a subset of a topological space X. A necessary and

 sufficient condition for B to be collared in X is that every homeomor-
 phism g: B -+ -+B4 can be "extended" to homeomorphism - of B x I' onto

 1 I' denotes the sect [01).
 2 All neighborhoods will be open.
 3 The emply set will be considered to be both collared and bicollared.
 4 "- -" means "onto".
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 LOCALLY FLAT IMBEDDINGS 333

 a neighborhood of B in X such that -(b, 0) = g(b) for each b e B.5
 PROOF. The proof of sufficiency is trivial, for we may take g to be the

 identity map. Suppose, on the other hand, that B is collared in X and

 g: B B is a homeomorphism. By hypothesis there is a homeomorphism
 h of B x I' onto a neighborhood of B such that h(b, 0) = b, b e B. Let
 g*: Bx I' -+ -+ Bx I' be the homeomorphism defined by g*(b, t)=(g(b), t),

 and let j: B x I' -+ X be defined by - = hg*. Then - is a homeomorphism
 of Bx I' onto a neighborhood of B (i.e., h(B x I')) and

 g(b, 0) = hg*(b, 0) = h(g(b), 0) = g(b)

 In the next lemma we show that if a homeomorphism of B x 0 into X
 can be extended to neighborbood of B x 0 in B x I', then it can be extend-
 ed to BxI'.

 LEMMA 1. Let B, X be metric spaces, and N a neighborhood of B x 0
 in B x I'. Suppose h: N -+ X is a homeomorphism of N onto a neighbor-
 hood of h(B x 0) in X. Then there is a homeomorphism h': B x I' X
 such that h' I B x O = h I B x O and h'(B x I') is a neighborhood of h(B x 0).

 PROOF. Let d be a metric for B such that under d the diameter of B
 is less than 1. Let D be the metric for B x I' defined by D((x, t), (x', t')) =
 max(d(x, x'), It-t' I). For b e B let g(b) = D(b, (Bx I') -N). Then g
 is a continuous positive real valued function on B, and for all b e B we
 have g(b) < 1. Let F: B x I'-- N be the homeomorphism defined by
 F(b, t) = (b, tg(b)), and let h' = hF.

 III. Spindle neighborhoods

 Suppose Z = B x I' where B is a metric space. Let U be an open sub-
 set of B and X: U-+ [O 1] a map6 such that X(x) = 0 if and only if
 x e U - U. We define the spindle neighborhood S(U, X) by:

 S(U, X) = {(x, t) e Bx I'I (x, O) e U. t < X(x)} .

 It is easily seen that S(U, X) is a neighborbood of U x 0 in B x I', and
 that the spindle neighborhoods form a neighborhood basis for U x 0 in
 Bx I'. For, suppose 0 is an open subset of Bx I' containing U x 0. Let
 D be the metric for B x I' defined in the proof of Lemma 1. For x e U let
 X(x) = min[D(x, UT- U), D(x,(Bx I') - 0)]. Then S(U, X) c 0.

 The map 7rs(u, x). Suppose S(U, X) is defined as above. We define a map
 7cs(u, ): B x I'-+ - B x I' by

 5 A Similar argument proves the corresponding theorem for the bi-collared case.
 6 A "map" is a continuous function.
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 334 MORTON BROWN

 {(x, t) ,(Xh t) 0 S(U, Y

 ir(x, t) = p(x, 0) , (x, t) S su

 (x, 2t - X(x)) , (x, t) G S(UX) -S(U, 2).
 2

 See Figure 1. In words, X is the identity on the complement of S( U, X),
 collapses S(U, (X/2)) "vertically" onto UxO, and carries the interval

 [(x, (X/2)(x)), (x, X(x))] linearly onto [(x, 0), (x, X(x))] for each x in U. Note
 that z maps B x I' - S(U, (X/2)) homeomorphically onto B x I'.

 I ~~~~~~~~~S (U,)

 Figure 1

 LEMMA 2. Let U be an open subset of the metric space B, N a neighbor-
 hood of Ux 0 in B x I', and f a homeomorphism of N onto the closure of

 a neighborhood of U x 0 such that f I U x 0 = 1. Then there is a homeo-
 morphism f': N -? B x I' and a neighborhood V of U x 0 in N such that

 (2.1) f'j(N-N) = fI(N-N),
 (2.2) f '(N) = f (N),

 (2.3) f' I V= 1.
 PROOF. (See Figure 2). Let S(U, X) be a spindle neighborhood of Ux 0

 such that S(U, X) c N n f(N). Let z be the associated mapping ZS8(U.X)
 and letf': No BxI' be defined by

 (x, z~~~~eS(U, i),

 f'(x) =

 {-rfr(x) xCeN-S U i

 (2.4) 2-rfc is well defined on N-S(U, (X/2)) and carries it homeo-
 morphically onto f(N) - S(U, (X/2)). First notice that z carries
 N-S( U, (X/2)) homeomorphically onto N. In turn, f carries N homeomor-
 phically onto f(N). Now z-1 carries B x I' homeomorphically onto
 B xI' - S(U, (X/2)) and is the identity on the complement of S(U, X).

 7 (2/2) is defined by (2/2)(x) = (1/2)2(x).
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 LOCALLY FLAT IMBEDDINGS 335

 Since S(U, X) c f(N), r-1 carries f(N) homeomorphically onto

 f(N) -S (U, (X/2)) .

 (2.5) f' is a well defined map. Suppose y e S(U,(X/2)) n (N-S (U, (X/2))-
 (U- U) U {(x, t) I x e U, t = (X/2)(x)}. If y e U- U, r-lfr(y) = y since ir
 and f are the identity on U - U. Suppose y = (x, (X/2)(x)), x e U. Then

 r-'Pfr(y) = 7r-lft (x -(x)) = 7r-lf(x, 0) = r-'(x, 0) = (x, (x))= y .

 (2.6) f' is a homeomorphism. It is evident from (2.4) and the definition
 of f' thatf' is 1 - 1. On the other hand f '(N-S (U, (X/2)) and f '(S(U, (X/2))
 are closed subsets of f '(N). Finally, f' is a homeomorphism on each of
 its domains of definition.

 Evidently (2.2) is satisfied. Choosing V = S(U, (X/2)) we see that (2.3)
 is satisfied. Finally, let y e N - N. Since S(U, X) c N n f(N), neither
 y nor f(y) is in S( U, X). Furthermore ir is the identity on the complement
 of S(U, X). Hence

 fW(y) = 7r-'fr(y) = ir-1f(y) =f(y)
 This completes the proof of Lemma 2.

 AN;

 _ j ) t ; ~~~~~~~~~~~~2.)

 Figure 2

 LEMMA 3. Let X, B be metric spaces and h: B -? X a homeomorphism.
 Suppose U1, U2 are open subsets of B, K is a closed (subset relative to B)
 of U1 n U2, and U1 U U2 = B. Suppose also that for i = 1, 2, h I U, can
 be extended to a homeomorphism hi of Uj x I' onto a neighborhood of h( U)
 in X such that hi I Uj x 0 = h I Uj. Then there is a homeomorphism
 h2: U2 x I'F hh2(U2xI')suchthathlU2 x O=hI U2 and hI V=hj V
 for some neighborhood V of K x 0 in (u1 n U2) xI'. (See Figure 3).

 PROOF. Let Ube an open subset of U1 n U2 such that Kc Uc Uc u1 n u2.
 Then there is a spindle neighborhood N of Ux 0 in B x I' such that
 N c h-1(h(U1 xI') nh2(U2 x I')). Hence the map f: N-+ B x I' defined
 by f(y) = hTlh2(y) is a well defined homeomorphism, f I U x 0 = 1 and f(N)
 is open in B x I'. Applying Lemma 2 we obtain a homeomorphism f ': N-?
 Bx I' and a neighborhood V of U x 08 such that:

 8 V can be chosen as a subset of (U1 n U2) x I'.
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 336 MORTON BROWN

 (3.1) f 'I (N-N) = f I (N-N),
 (3.2) f'(N) =f(N),
 (3.3) f'J V= 1.
 Define h': U2 x I'-+Xby

 (3.4) h'(x) = h1f '(x), x e n (u x I'),
 1h2(x) xe(U2 x ') -N.

 Observe that h' is a homeomorphism on each of the domains of defini-

 tion and that the domains are closed in U2 x I'.

 (3.5) h' is well defined. Suppose x e [N n (U2 X I')] n [(U2 2I1') -N] =
 (N - N) n (U2 X I'). Then since x e N- N, h1f '(x) = h1f(x) = h1hT1h2(x) =
 h2(x).

 h2(Nn (U2 x I')) = h2(Nn (U2x I'))

 hl(N n ( U2 X I')) = h1f'(N n (U2 x I'))

 (3.6) = h1f(N n (U2x I')),

 = hlhT'h2(N n (U2 x I')),

 = h2(N n (U2 x I'))

 (3.7) h' is a homeomorphism. If follows from (3.6) and (3.4) that

 hf(.Fn (u2x it)) n h((U2xI')-N)=h2(.Fn (u2xi')nh2((U2xP')-N)=o .

 Hence h' is 1 - 1. On the other hand the image of each domain is closed

 in h'(U2 x I') (again by (3.6) and (3.4) and the fact that h' is a homeomor-
 phism on each domain.

 Suppose x E V. Then since f 'I V = 1, h'(x) = h1f '(x) = h1(x). Finally,
 suppose x E U2. If (x, 0) , N then h'(x, 0) = h2(x, 0) = h(x). If (x, 0) e N
 then, since N is a spindle neighborhood of U x 0, (x, 0) E V. Hence
 h'(x, 0) = h1f'(x, 0) = h(x, 0) - h(x).

 B -'1' _

 UGxo ~Kwxo

 U2 - O'

 Figure 3

 LEMMA 4. Let B be a subset of a metric space X. Suppose B= U1 U U2
 where U1, U2 are open in B and Uln U2#0. If both of U1, U2 are col-
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 LOCALLY FLAT IMBEDDINGS 337

 lared in X then B is collared in X.

 PROOF. Since B is a normal space there are open subsets O1, 02 of B
 such that O1 c U1, 2 C U2 and B= 01 U 0,. Let K=0,1 2 0. Then K
 is a closed subset rel B of U, n U2. By the hypothesis there exist homeo-

 morphisms h%(i = 1, 2) of U. x I' onto a neighborhood of Ui in X such
 that h%(b, 0) = b, b e U.. Applying Lemma 3 (with h the identity map) we

 get a homeomorphism h': U2 x I' h2(U2 x I') and a neighborhood
 V of KxO in (U1 n U2) x I' such thath M V = h1I V and h'I U2 x 0 =
 h2J U2 x 0.

 Obviously (01 - 02) n 02 - 01 = 01 - 02 n (02 - 0?) = 0, i.e., 01-02
 and 02 -01 are completely separated in X. Since X is a metric space
 there exist disjoint open subsets W1, W2 of X such that

 01 - O2c W1czh,(Ux I')

 02-01 C W2c h1(U2 x I') .

 Let V1, V2 be spindle neighborhoods of (0, - 02) X 0, (02 - ?1) X 0 re-
 spectively such that h1( V1) c W1, hl( V2) c W2. Then V. is open in B x I',

 h(v1) nh(V2) = O, andB x O c V, U V2 U V. Letf: V1 U V2 U V-+ X
 be defined by

 hl(x), x e V1,

 f(x) = hl(x), x e V2,

 h,(x) = h'(x), x e V

 Clearly f is a well defined homeomorphism and f(b, 0) = b, b E B. Note

 that V1 U V2 U Vis a neighborhood of Bx 0 in B x I'. For V1D (01-02) X O,
 V2 D (02 - ?1)X i.,.d V D (, n ?2) X 0. In view of Lemma 1 the proof
 is complete.

 We are now in a position to prove the main result of this section.

 THEOREM 1. A locally collared subset of a metric space is collared.
 PROOF. Suppose B is a locally collared subset of the metric space X.

 Let us say that an open subset of B has property C if it is collared in X.

 ( i ) C is hereditary, i.e., if U has property C and V is an open subset
 of U then V has property C.

 If V is empty it has property C by definition. Suppose V # 0. Then

 U # 0, and there is a homeomorphism hq, of Ux I' onto a neighborhood
 of U in X such that hu(x, 0) = x, x e U. Let hv = hu I Vx I'.

 (ii) C is closed under disjoint union, i.e., if {Ua5}1,eA is a pairwise
 disjoint collection of open subsets of B each having property C, then

 UaEA{ U,} has property C.
 Suppose h, is the homeomorphism of U, x I' onto a neighborhood of U,

 in X such that h,(x, 0) = x, x e Uk,. Since X is a metric space there is a
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 338 MORTON BROWN

 pairwise disjoint collection {I , of open subsets of X such that
 U~.c W zc h(U, x I'), a e A.9 Let 0 = UeAh-1(W W). Then 0 is an
 open subset of B x I' and 0 D U5EA{ U, x O}. Let h: 0 -+ X be the homeo-
 morphism defined by h It (UxI') n O = haj (U,,xI') n o. In view of
 Lemma 1, Ua5EA{ Uaj is collared.

 (iii) Suppose U1, U2 are open subsets of B each having property C.
 Then U1 U U2 has property C.

 If U1 n U2 = 0, (iii) is a consequence of (ii).
 If U1 n U2 # 0, (iii) is a consequence of Lemma 4.
 In a metric space, a property of open sets satisfying conditions (i)-(iii),

 and which is satisfied locally, is possessed by all open subsets [7]. In par-
 ticular, B itself has property C. This completes the proof of Theorem 1.

 The following is a restatement of Theorem 1 into a theorem about ex-

 tensions of homeomorphisms (cf. Lemma 0).

 COROLLARY. Let X, B B x I' be metric spaces and h: B x 0 -* X be a
 homeomorphism. Suppose B can be covered by a collection of open sub-

 sets { UO}1,bA such that for each a e A, h I UO. x 0 has a homeomorphic ex-
 tension ho, mapping UO. x I' onto a neighborhood of h(Ua, x 0). Then h
 has a homeomorphic extension mapping B x I' onto a neighborhood of
 h(B x 0).

 IV. Applications to manifolds

 An n-manifold with boundary is a connected metrizable topological

 space such that each point has a closed neighborhood homeomorphic to an

 n-cell. As usual the boundary consists of the subset of points which do not

 have (open) neighborhoods homeomorphic to En. If the boundary is emp-

 ty, the manifold with boundary will be called a manifold. Suppose X is
 an n-manifold, and B is a subset of X which is an r-manifold under the

 relative topology. Then B is an r-submanifold of X. Suppose, in partic-

 ular, that r = n - 1. Then B is two-sided in X if there is a connected

 neighborhood N of B which is separated by B.10 Finally B is locally flat
 in X if for each point b e B there is a neighborhood Nb of b in X and a

 homeomorphism hb: Nb -+ En such that hb(Nb n B) c En-l c E.

 REMARK. In the definition of locally flat there is no loss of generality
 in requiring that hb(Nb) = En and hb(Nb n B) = En-1. The definition is

 equivalent to that given in ? I. The following two lemmas are easily es-
 tablished, and we state them without proof.

 LEMMA 5. The boundary of an n-manifold with boundary is locally

 9 Let Wa, = h,(Ua, x I ') n {x E X I D(x, Ua,) < D(x, U UVig) I
 10 In this case N - B has two components.
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 LOCALLY FLAT IMIBEDDINGS 339

 collared.

 LEMMA 6. A submanifold Bn-1 of a manifold Xn is locally flat in X7
 if and only if it is locally bi-collared in Xn.

 THEOREM 2. The boundary of an n-manifold with boundary is collared.
 This follows directly from Theorem 1 and Lemma 5.

 THEOREM 3. Let Bn-1 be a locally flat two-sided (n - 1)-submanifold
 of a manifold X4. Then Bn-1 is bi-collared in Xn.

 PROOF. Let N be a connected neighborhood of B in X which is separat-
 ed by B, and let Q, R be the components of N - B.10 Since B is locally
 flat in N, Q U B and R U B are manifolds with boundary B. It follows
 from Theorem 2 that B is collared in each. Hence B is bi-collared in X.

 REMARK. The case of a one sided manifold will be treated in a forth-
 coming paper by E.A.Michael.

 THEOREM 4. Let Y.-l be locally flat in Sn. Then E is flat in SX.
 PROOF. This follows from Theorem 3 above and Theorem 5 of [5].

 V. Applications to polyhedral manifolds

 DEFINITIONS.11 A 0-star sphere :? is a pair of points. A 0-star cell Si
 is a single point. For n > 0 an n-star sphere . (n-star cell 6o) is a finite
 complex homeomorphic to the n-sphere Sn(n-cell In) and such that the
 link12 of each vertex is a Xn-1(En-1 or 3n-1). An n-star manifold Mn (mani-
 fold with boundary Nn) is a locally finite complex such that the link of
 each vertex is a 1;n-l(:n-l or Cn-1). A 0-star manifold (manifold with

 boundary) is an even (odd) numbered set of points.
 A combinatorial n-cell In (n-sphere Sn) is a finite complex which has a

 linear subdivision isomorphic to some linear subdivision of an n-simplex

 (the boundary of an (n + 1)-simplex). A combinatorial n-manifold (n-
 manifold with boundary) is a locally finite complex such that the link of

 each vertex is an Sn-i(Sn-l or In-,).

 REMARK. The reader is referred to [11] for a more complete discussion
 of star manifolds. Combinatorial manifolds are special cases of star mani-
 folds. If every combinatorial manifold homeomorphic to an n-sphere is a
 combinatorial n-sphere (and this has been proved for n#4, 5, 7 by Smale

 [12]), then all n-star spheres are combinatorial n-spheres). Unfortunately,
 the only proof we know of this implication requires induction on n; hence

 even with Smale's result, n-star spheres are known to be combinatorial

 " These definitions are due to Newman [11].
 12 The link of a vertex v in a complex K consists of the union of the closed simplexes a

 of K not containing v but such that the join of v and a is a simplex of K. We denote it by

 lk (v, K). St (v, K) _ star of v in K is the join of v with lk (v, K).
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 340 MORTON BROWN

 spheres only for n ? 3 (and combinatorial manifolds for n ? 4).

 THEOREM 5. Let Ml,` be an (n - 1)-star manifold imbedded as a sub-

 complex of an n-star manifold M". Then Ml-, is locally flat in M".

 PROOF. The theorem is evidently true for n = 1. Inductively, suppose

 we have proven the theorem for n = k. Let Ml be a k-star manifold
 imbedded as a subcomplex of the (k + 1)-star manifold Mk~l. Let v be a

 vertex of Mt. Then lk(v, MI) is a .1-` imbedded as a subcomplex of
 lk (v, Ml+') which is a Y.' By the induction hypothesis lk(v, MI) is locally

 flat in lk(v, Ml+%). Applying Theorem 4 we obtain a homeomorphism
 h: lk(v, Ml+')-- S such that h(lk(v, Ml)) is the equator SI` of SI. We

 may think of SI as the unit sphere of El+l with SI` in the hyperplane
 E'. Since St(v, MI+')"2 is the join of v and lk(v, Ml+') and, since the unit

 ball Bl+l is the join of the origin and SI, h can be extended in the obvious

 way to a homeomorphism h: St(v, Ml'+')-* --B'+1. Furthermore, St (v, Ml)
 is the joinofvwithlk(v, Mk). Henceh(St(v, M`))cE'`. Sinceeachpoint
 of MI lies in the interior of the star of some vertex of M& we have estab-
 lished that MI is locally flat in Ml+'. The following theorem is an im-

 mediate consequence of Theorem 5 and Theorem 3.

 THROREM 6. Let M,-1 be an (n - 1)-star manifold imbedded as a 2-

 sided subcomplex of an n-star manifold M". Then M`-1 is bi-collared
 in Mn.

 THEOREM 7. (Newman). Let .7-' be an (n - 1)-star sphere imbedded
 as a subcomplex of an n-star triangulation of the n-sphere S". Then
 En-1 is flat in S".

 QUESTION. Suppose K is bi-collared (n - 1)-polyhedron in En. Is K a
 manifold? The answer is affirmative if and only if the link of every ver-

 tex in a triangulated n-manifold is an (n - 1)-manifold. A negative answer

 would give a counter example to a very weak form of the Hauptvermutung
 for spheres.

 UNIVERSITY OF MICHIGAN AND INSTITUTE FOR ADVANCED STUDY
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