Locally Flat Imbeddings of Topological Manifolds

Author(s): Morton Brown

Source: Annals of Mathematics, Mar., 1962, Second Series, Vol. 75, No. 2 (Mar., 1962), pp. 331-341

Published by: Mathematics Department, Princeton University

Stable URL: https://www.jstor.org/stable/1970177

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

is collaborating with JSTOR to digitize, preserve and extend access to Annals of Mathematics

LOCALLY FLAT IMBEDDINGS OF TOPOLOGICAL MANIFOLDS

By Morton Brown*

(Received August 14, 1961)

I. Introduction

Let us say that a topological (n-1)-sphere Σ^{n-1} imbedded in the *n*-sphere S^n is *flat* if there is a homeomorphism of S^n upon itself which carries Σ^{n-1} onto the equator S^{n-1} of S^n . The classical result of Schoenflies states that every Σ^1 in S^2 is flat. Antoine [1] and Alexander [3] exhibited imbeddings of Σ^2 in S^3 which are not flat. These examples can be modified to produce non-flat imbeddings of Σ^{n-1} in S^n for $n \ge 3$. However, Alexander [2] proved that a sufficient condition for Σ^2 to be flat in S^3 is that it be a polyhedron (i.e., the union of a finite collection of convex cells).

In view of Alexander's theorem, let us define a compact subset X of S^n to be *tame* if there is a homeomorphism of S^n upon itself carrying X onto a polyhedron, *semi-locally tame* if there is a homeomorphism of a neighborhood of X into S^n carrying X onto a polyhedron, and *locally tame* if for each point $x \in X$ there is a neighborhood N_x of x in S^n and a homeomorphism of \overline{N}_x into S^n such that the image of $\overline{N}_x \cap X$ is a polyhedron. Moise [8] proved that a Σ^2 in S^3 is tame (and hence flat) if it is semi-locally tame. Bing [4] (and independently Moise [9]) proved that Σ^2 is semi-locally tame.

For n > 4 it is still unknown whether a tame Σ^{n-1} in S^n must be flat. (See however Newman [11] or Theorem 7 of this paper.) Recently, attempts to circumvent this barrier have been successful. Let us define a Σ^{n-1} in S^n to be *bi-collared*⁰ if there is a homeomorphism of some neighborhood of Σ^{n-1} into S^n carrying Σ^{n-1} onto the equator S^{n-1} of S^n and *locally flat* if for each point x of Σ^{n-1} there is a neighborhood N_x of x in S^n and a homeomorphism of N_x into S^n such that the image of $N_x \cap \Sigma^{n-1}$ lies in S^{n-1} . In 1959 Mazur [6] proved that a bi-collared Σ^{n-1} is flat if the defining homeomorphism is piecewise linear on some non-empty open set. An important consequence of Mazur's theorem is that a differentiably imbedded Σ^{n-1} in S^n is flat. Of equally great importance was the indication (in view of Mazur's elegant proof) that some important theorems in higher dimensions might be accessible by elementary techniques.

In 1960 Brown [5] proved that every bi-collared Σ^{n-1} in S^n is flat. Shortly

^{*} The author holds a National Science Foundation Fellowship.

[•] Mazur calls this "collared". It is also referred to as the "shell hypothesis". We prefer to reserve the term collar for the one sided case.

afterward Morse [10] succeeded in removing the hypothesis of piecewise linearity from Mazur's argument. One of the consequences of the results in this paper is that a locally flat Σ^{n-1} in S^n is bi-collared. The following diagram indicates the present status of affairs for Σ^{n-1} in S^n .

FLAT	\rightarrow	TAME
$\downarrow \uparrow$		\downarrow
BI-COLLARED	\rightarrow	SEMI-LOCALLY TAME
$\downarrow \uparrow$		↓
LOCALLY FLAT	\rightarrow	LOCALLY TAME

Statement of results. The main theorem of this paper is that a manifold with boundary has collared boundary (see §§ II; IV for definitions). From this we derive the result that a two-sided (n-1)-manifold imbedded in a locally flat fashion in an n-manifold is bi-collared. We also give a new proof (originally due to Newman [11]) that a combinatorial (n-1)-sphere imbedded as a subcomplex of a combinatorial subdivision of the n-sphere is flat.

The author is indebted to E. A. Michael for numerous helpful discussions. In fact, many aspects of the formulation and proof of Theorem 1 in its present generality are the result of joint work.

II. Collared subsets

Let X be a topological space and B a subset of X. Then B is collared in X if there is a homeomorphism h carrying $B \times I'^1$ onto a neighborhood² of B such that h(b, 0) = b for all $b \in B^3$. If B can be covered by a collection of open subsets (relative to B) each of which is collared in X, then B is locally collared in X. (The most important example of a locally collared subset is the case where B is the boundary of a manifold with boundary.) If there is a homeomorphism h carrying $B \times (-1, 1)$ onto a neighborhood of B such that h(b, 0) = b for all $b \in B$, then B is bi-collared in X.³ Similarly, B is locally bi-collared in X if B can be covered by a collection of bi-collared open subsets. (The unit (n - 1)-sphere of E^n is bi-collared in E^n . On the other hand the central circle of a Möbius band is locally bi-collared but not bi-collared.)

LEMMA 0. Let B be a subset of a topological space X. A necessary and sufficient condition for B to be collared in X is that every homeomorphism $g: B \to \to B^4$ can be "extended" to homeomorphism \overline{g} of $B \times I'$ onto

¹ I' denotes the sect [01).

² All neighborhoods will be open.

⁸ The emply set will be considered to be both collared and bicollared.

^{4 &}quot; \rightarrow \rightarrow " means "onto".

a neighborhood of B in X such that $\overline{g}(b, 0) = g(b)$ for each $b \in B$.⁵

PROOF. The proof of sufficiency is trivial, for we may take g to be the identity map. Suppose, on the other hand, that B is collared in X and $g: B \to \to B$ is a homeomorphism. By hypothesis there is a homeomorphism h of $B \times I'$ onto a neighborhood of B such that $h(b, 0) = b, b \in B$. Let $g^*: B \times I' \to B \times I'$ be the homeomorphism defined by $g^*(b, t) = (g(b), t)$, and let $\overline{g}: B \times I' \to X$ be defined by $\overline{g} = hg^*$. Then \overline{g} is a homeomorphism of $B \times I'$ onto a neighborhood of B (i.e., $h(B \times I')$) and

$$\overline{g}(b, 0) = hg^*(b, 0) = h(g(b), 0) = g(b)$$

In the next lemma we show that if a homeomorphism of $B \times 0$ into X can be extended to neighborbood of $B \times 0$ in $B \times I'$, then it can be extended to $B \times I'$.

LEMMA 1. Let B, X be metric spaces, and N a neighborhood of $B \times 0$ in $B \times I'$. Suppose $h: N \to X$ is a homeomorphism of N onto a neighborhood of $h(B \times 0)$ in X. Then there is a homeomorphism $h': B \times I' \to X$ such that $h' | B \times 0 = h | B \times 0$ and $h'(B \times I')$ is a neighborhood of $h(B \times 0)$.

PROOF. Let d be a metric for B such that under d the diameter of B is less than 1. Let D be the metric for $B \times I'$ defined by $D((x, t), (x', t')) = \max(d(x, x'), |t - t'|)$. For $b \in B$ let $g(b) = D(b, (B \times I') - N)$. Then g is a continuous positive real valued function on B, and for all $b \in B$ we have g(b) < 1. Let $\Gamma: B \times I' \to N$ be the homeomorphism defined by $\Gamma(b, t) = (b, tg(b))$, and let $h' = h\Gamma$.

III. Spindle neighborhoods

Suppose $Z = B \times I'$ where B is a metric space. Let U be an open subset of B and $\lambda: \overline{U} \to [0, 1]$ a map⁶ such that $\lambda(x) = 0$ if and only if $x \in \overline{U} - U$. We define the spindle neighborhood $S(U, \lambda)$ by:

$$S(U, \lambda) = \{(x, t) \in B \times I' \mid (x, 0) \in U, t < \lambda(x)\}.$$

It is easily seen that $S(U, \lambda)$ is a neighborhood of $U \times 0$ in $B \times I'$, and that the spindle neighborhoods form a neighborhood basis for $U \times 0$ in $B \times I'$. For, suppose O is an open subset of $B \times I'$ containing $U \times 0$. Let D be the metric for $B \times I'$ defined in the proof of Lemma 1. For $x \in U$ let $\lambda(x) = \min[D(x, \overline{U} - U), D(x, (B \times I') - O)]$. Then $S(U, \lambda) \subset O$.

The map $\pi_{S(U,\lambda)}$. Suppose $S(U,\lambda)$ is defined as above. We define a map $\pi_{S(U,\lambda)}: B \times I' \to B \times I'$ by

⁵ A Similar argument proves the corresponding theorem for the bi-collared case.

⁶ A "map" is a continuous function.

$$\pi(x, t) = egin{cases} (x, t) \ , & (x, t) \notin S(U, \lambda) \ (x, 0) \ , & (x, t) \in S\Big(U, rac{\lambda}{2}\Big)^r \ (x, 2t - \lambda(x)) \ , & (x, t) \in S(U, \lambda) - S\Big(U, rac{\lambda}{2}\Big). \end{cases}$$

See Figure 1. In words, π is the identity on the complement of $S(U, \lambda)$, collapses $S(U, (\lambda/2))$ "vertically" onto $U \times 0$, and carries the interval $[(x, (\lambda/2)(x)), (x, \lambda(x))]$ linearly onto $[(x, 0), (x, \lambda(x))]$ for each x in U. Note that π maps $B \times I' - S(U, (\lambda/2))$ homeomorphically onto $B \times I'$.

LEMMA 2. Let U be an open subset of the metric space B. N a neighborhood of $U \times 0$ in $B \times I'$, and f a homeomorphism of \overline{N} onto the closure of a neighborhood of $U \times 0$ such that $f | \overline{U} \times 0 = 1$. Then there is a homeomorphism $f': \overline{N} \to B \times I'$ and a neighborhood V of $U \times 0$ in N such that

- (2.1) $f'|(\bar{N}-N) = f|(\bar{N}-N)$.
- (2.2) $f'(\bar{N}) = f(\bar{N})$,
- (2.3) f' | V = 1.

PROOF. (See Figure 2). Let $S(U, \lambda)$ be a spindle neighborhood of $U \times 0$ such that $S(U,\lambda) \subset N \cap f(N)$. Let π be the associated mapping $\pi_{S(U,\lambda)}$ and let $f': \overline{N} \to B \times I'$ be defined by

$$f'(x) = \begin{cases} x , & x \in S\left(U, \frac{\lambda}{2}\right), \\ \\ \pi^{-1}f\pi(x) , & x \in \overline{N} - S\left(U, \frac{\lambda}{2}\right). \end{cases}$$

(2.4) $\pi^{-1}f\pi$ is well defined on $\overline{N} - S(U, (\lambda/2))$ and carries it homeomorphically onto $f(\overline{N}) - S(U, (\lambda/2))$. First notice that π carries $\overline{N} - S(U, (\lambda/2))$ homeomorphically onto \overline{N} . In turn, f carries \overline{N} homeomorphically onto $f(\bar{N})$. Now π^{-1} carries $B \times I'$ homeomorphically onto $B \times I' - S(U, (\lambda/2))$ and is the identity on the complement of $S(U, \lambda)$. ⁷ $(\lambda/2)$ is defined by $(\lambda/2)(x) = (1/2)\lambda(x)$.

Since $S(U, \lambda) \subset f(\overline{N})$, π^{-1} carries $f(\overline{N})$ homeomorphically onto $f(\overline{N}) - S(U, (\lambda/2))$.

(2.5) f' is a well defined map. Suppose $y \in \overline{S(U,(\lambda/2))} \cap (\overline{N} - S(U,(\lambda/2)) = (\overline{U} - U) \cup \{(x, t) | x \in U, t = (\lambda/2)(x)\}$. If $y \in \overline{U} - U, \pi^{-1}f\pi(y) = y$ since π and f are the identity on $\overline{U} - U$. Suppose $y = (x, (\lambda/2)(x)), x \in U$. Then

$$\pi^{-1}f\pi(y) = \pi^{-1}f\pi\Big(x, rac{\lambda}{2}(x)\Big) = \pi^{-1}f(x, 0) = \pi^{-1}(x, 0) = \Big(x, rac{\lambda}{2}(x)\Big) = y$$
.

(2.6) f' is a homeomorphism. It is evident from (2.4) and the definition of f' that f' is 1-1. On the other hand $f'(\overline{N}-S(U, (\lambda/2)))$ and $f'(\overline{S(U, (\lambda/2))})$ are closed subsets of $f'(\overline{N})$. Finally, f' is a homeomorphism on each of its domains of definition.

Evidently (2.2) is satisfied. Choosing $V = S(U, (\lambda/2))$ we see that (2.3) is satisfied. Finally, let $y \in \overline{N} - N$. Since $S(U, \lambda) \subset N \cap f(N)$, neither y nor f(y) is in $S(U, \lambda)$. Furthermore π is the identity on the complement of $S(U, \lambda)$. Hence

$$f'(y) = \pi^{-1} f \pi(y) = \pi^{-1} f(y) = f(y) \; .$$

This completes the proof of Lemma 2.

LEMMA 3. Let X, B be metric spaces and h: $B \to X$ a homeomorphism. Suppose U_1 , U_2 are open subsets of B, K is a closed (subset relative to B) of $U_1 \cap U_2$, and $U_1 \cup U_2 = B$. Suppose also that for $i = 1, 2, h | U_i$ can be extended to a homeomorphism h_i of $U_i \times I'$ onto a neighborhood of $h(U_i)$ in X such that $h_i | U_i \times 0 = h | U_i$. Then there is a homeomorphism $h'_2: U_2 \times I' \to h_2(U_2 \times I')$ such that $h'_2 | U_2 \times 0 = h | U_2$ and $h'_2 | V = h_1 | V$ for some neighborhood V of $K \times 0$ in $(U_1 \cap U_2) \times I'$. (See Figure 3).

PROOF. Let U be an open subset of $U_1 \cap U_2$ such that $K \subset U \subset \overline{U} \subset U_1 \cap U_2$. Then there is a spindle neighborhood N of $U \times 0$ in $B \times I'$ such that $\overline{N} \subset h_2^{-1}(h_1(U_1 \times I') \cap h_2(U_2 \times I'))$. Hence the map $f: \overline{N} \to B \times I'$ defined by $f(y) = h_1^{-1}h_2(y)$ is a well defined homeomorphism, $f \mid \overline{U} \times 0 = 1$ and f(N) is open in $B \times I'$. Applying Lemma 2 we obtain a homeomorphism $f': \overline{N} \to B \times I'$ and a neighborhood V of $U \times 0^8$ such that:

* V can be chosen as a subset of $(U_1 \cap U_2) \times I'$.

$$(3.1) f'|(N-N) = f|(\bar{N}-N),$$

$$(3.2) f'(\bar{N}) = f(\bar{N}),$$

$$(3.3) f'|V = 1.$$
Define $h'_2: U_2 \times I' \to X$ by
$$(3.4) \qquad h'_2(x) = \begin{cases} h_1 f'(x), & x \in \bar{N} \cap (U_2 \times I'), \\ h_2(x), & x \in (U_2 \times I') - N. \end{cases}$$

Observe that h'_2 is a homeomorphism on each of the domains of definition and that the domains are closed in $U_2 \times I'$.

(3.5) h'_2 is well defined. Suppose $x \in [\bar{N} \cap (U_2 \times I')] \cap [(U_2 \times I') - N] = (\bar{N} - N) \cap (U_2 \times I')$. Then since $x \in \bar{N} - N$, $h_1 f'(x) = h_1 f(x) = h_1 h_1^{-1} h_2(x) = h_2(x)$.

(3.7) h'_2 is a homeomorphism. If follows from (3.6) and (3.4) that $h'_2(\bar{N} \cap (U_2 \times I')) \cap h'_2((U_2 \times I') - N) = h_2(\bar{N} \cap (U_2 \times I') \cap h_2((U_2 \times I') - N)) = 0$.

Hence h'_2 is 1-1. On the other hand the image of each domain is closed in $h'_2(U_2 \times I')$ (again by (3.6) and (3.4) and the fact that h'_2 is a homeomorphism on each domain.

Suppose $x \in V$. Then since f' | V = 1, $h'_2(x) = h_1 f'(x) = h_1(x)$. Finally, suppose $x \in U_2$. If $(x, 0) \notin N$ then $h'_2(x, 0) = h_2(x, 0) = h(x)$. If $(x, 0) \in N$ then, since N is a spindle neighborhood of $U \times 0$, $(x, 0) \in V$. Hence $h'_2(x, 0) = h_1 f'(x, 0) = h_1(x, 0) = h(x)$.

LEMMA 4. Let B be a subset of a metric space X. Suppose $B = U_1 \cup U_2$ where U_1, U_2 are open in B and $U_1 \cap U_2 \neq 0$. If both of U_1, U_2 are col-

lared in X then B is collared in X.

PROOF. Since B is a normal space there are open subsets O_1 , O_2 of B such that $\overline{O}_1 \subset U_1$, $\overline{O}_2 \subset U_2$ and $B = O_1 \cup O_2$. Let $K = \overline{O}_1 \cap \overline{O}_2$. Then K is a closed subset rel B of $U_1 \cap U_2$. By the hypothesis there exist homeomorphisms $h_i(i = 1, 2)$ of $U_i \times I'$ onto a neighborhood of U_i in X such that $h_i(b, 0) = b, b \in U_i$. Applying Lemma 3 (with h the identity map) we get a homeomorphism $h'_2: U_2 \times I' \to \to h_2(U_2 \times I')$ and a neighborhood V of $K \times 0$ in $(U_1 \cap U_2) \times I'$ such that $h'_2 | V = h_1 | V$ and $h'_2 | U_2 \times 0 =$ $h_2 | U_2 \times 0$.

Obviously $(O_1 - O_2) \cap \overline{O_2 - O_1} = \overline{O_1 - O_2} \cap (O_2 - O_1) = 0$, i.e., $O_1 - O_2$ and $O_2 - O_1$ are completely separated in X. Since X is a metric space there exist disjoint open subsets W_1 , W_2 of X such that

$$O_1-O_2\subset W_1\subset h_1(U_1 imes I') \ O_2-O_1\subset W_2\subset h_2'(U_2 imes I') \;.$$

Let V_1 , V_2 be spindle neighborhoods of $(O_1 - \overline{O}_2) \times 0$, $(O_2 - \overline{O}_1) \times 0$ respectively such that $h_1(V_1) \subset W_1$, $h'_2(V_2) \subset W_2$. Then V_i is open in $B \times I'$, $h(V_1) \cap h'_2(V_2) = 0$, and $B \times 0 \subset V_1 \cup V_2 \cup V$. Let $f: V_1 \cup V_2 \cup V \to X$ be defined by

$$f(x) = egin{pmatrix} h_1(x) \ h_2'(x) \ h_2$$

$$(h_1(x)=h_2'(x)$$
 , $x\in V$.

Clearly f is a well defined homeomorphism and $f(b, 0) = b, b \in B$. Note that $V_1 \cup V_2 \cup V$ is a neighborhood of $B \times 0$ in $B \times I'$. For $V_1 \supset (O_1 - \overline{O_2}) \times 0$, $V_2 \supset (O_2 - \overline{O_1}) \times 0$ and $V \supset (\overline{O_1} \cap \overline{O_2}) \times 0$. In view of Lemma 1 the proof is complete.

We are now in a position to prove the main result of this section.

THEOREM 1. A locally collared subset of a metric space is collared.

PROOF. Suppose B is a locally collared subset of the metric space X. Let us say that an open subset of B has property C if it is collared in X.

(i) C is hereditary, i.e., if U has property C and V is an open subset of U then V has property C.

If V is empty it has property C by definition. Suppose $V \neq 0$. Then $U \neq 0$, and there is a homeomorphism h_u of $U \times I'$ onto a neighborhood of U in X such that $h_u(x, 0) = x, x \in U$. Let $h_v = h_u | V \times I'$.

(ii) C is closed under disjoint union, i.e., if $\{U_{\alpha}\}_{\alpha \in A}$ is a pairwise disjoint collection of open subsets of B each having property C, then $\bigcup_{\alpha \in A} \{U_{\alpha}\}$ has property C.

Suppose h_{α} is the homeomorphism of $U_{\alpha} \times I'$ onto a neighborhood of U_{α} in X such that $h_{\alpha}(x, 0) = x, x \in U_{\alpha}$. Since X is a metric space there is a pairwise disjoint collection $\{W_{\alpha}\}_{\alpha \in A}$ of open subsets of X such that $U_{\alpha} \subset W_{\alpha} \subset h_{\alpha}(U_{\alpha} \times I'), \alpha \in A$.⁹ Let $O = \bigcup_{\alpha \in A} h_{\alpha}^{-1}(W_{\alpha})$. Then O is an open subset of $B \times I'$ and $O \supset \bigcup_{\alpha \in A} \{U_{\alpha} \times 0\}$. Let $h: O \to X$ be the homeomorphism defined by $h \mid (U_{\alpha} \times I') \cap O = h_{\alpha} \mid (U_{\alpha} \times I') \cap O$. In view of Lemma 1, $\bigcup_{\alpha \in A} \{U_{\alpha}\}$ is collared.

(iii) Suppose U_1 , U_2 are open subsets of B each having property C. Then $U_1 \cup U_2$ has property C.

If $U_1 \cap U_2 = 0$, (iii) is a consequence of (ii).

If $U_1 \cap U_2 \neq 0$, (iii) is a consequence of Lemma 4.

In a metric space, a property of open sets satisfying conditions (i)–(iii), and which is satisfied locally, is possessed by all open subsets [7]. In particular, B itself has property C. This completes the proof of Theorem 1.

The following is a restatement of Theorem 1 into a theorem about extensions of homeomorphisms (cf. Lemma 0).

COROLLARY. Let X, B, $B \times I'$ be metric spaces and h: $B \times 0 \to X$ be a homeomorphism. Suppose B can be covered by a collection of open subsets $\{U_{\alpha}\}_{\alpha \in A}$ such that for each $\alpha \in A$, $h \mid U_{\alpha} \times 0$ has a homeomorphic extension h_{α} mapping $U_{\alpha} \times I'$ onto a neighborhood of $h(U_{\alpha} \times 0)$. Then h has a homeomorphic extension mapping $B \times I'$ onto a neighborhood of $h(B \times 0)$.

IV. Applications to manifolds

An *n*-manifold with boundary is a connected metrizable topological space such that each point has a closed neighborhood homeomorphic to an *n*-cell. As usual the boundary consists of the subset of points which do not have (open) neighborhoods homeomorphic to E^n . If the boundary is empty, the manifold with boundary will be called a manifold. Suppose X is an *n*-manifold, and B is a subset of X which is an *r*-manifold under the relative topology. Then B is an *r*-submanifold of X. Suppose, in particular, that r = n - 1. Then B is two-sided in X if there is a connected neighborhood N of B which is separated by B^{10} . Finally B is locally flat in X if for each point $b \in B$ there is a neighborhood N_b of b in X and a homeomorphism $h_b: N_b \to E^n$ such that $h_b(N_b \cap B) \subset E^{n-1} \subset E^n$.

REMARK. In the definition of locally flat there is no loss of generality in requiring that $h_b(N_b) = E^n$ and $h_b(N_b \cap B) = E^{n-1}$. The definition is equivalent to that given in § I. The following two lemmas are easily established, and we state them without proof.

LEMMA 5. The boundary of an n-manifold with boundary is locally

⁹ Let $W_{\alpha} = h_{\alpha}(U_{\alpha} \times I') \cap \{x \in X \mid D(x, U_{\alpha}) < D(x, \bigcup_{\beta \neq \alpha} U_{\beta})\}.$

¹⁰ In this case N - B has two components.

collared.

LEMMA 6. A submanifold B^{n-1} of a manifold X^n is locally flat in X^n if and only if it is locally bi-collared in X^n .

THEOREM 2. The boundary of an n-manifold with boundary is collared. This follows directly from Theorem 1 and Lemma 5.

THEOREM 3. Let B^{n-1} be a locally flat two-sided (n-1)-submanifold of a manifold X^n . Then B^{n-1} is bi-collared in X^n .

PROOF. Let N be a connected neighborhood of B in X which is separated by B, and let Q, R be the components of N - B.¹⁰ Since B is locally flat in $N, Q \cup B$ and $R \cup B$ are manifolds with boundary B. It follows from Theorem 2 that B is collared in each. Hence B is bi-collared in X.

REMARK. The case of a one sided manifold will be treated in a forthcoming paper by E.A.Michael.

THEOREM 4. Let Σ^{n-1} be locally flat in S^n . Then Σ^{n-1} is flat in S^n . PROOF. This follows from Theorem 3 above and Theorem 5 of [5].

V. Applications to polyhedral manifolds

DEFINITIONS.¹¹ A 0-star sphere Σ^0 is a pair of points. A 0-star cell \mathcal{J}^0 is a single point. For n > 0 an n-star sphere $\Sigma^n(n-star \ cell \ \mathcal{J}^n)$ is a finite complex homeomorphic to the n-sphere $S^n(n-cell \ I^n)$ and such that the link¹² of each vertex is a $\Sigma^{n-1}(\Sigma^{n-1} \text{ or } \mathcal{J}^{n-1})$. An n-star manifold M^n (manifold with boundary N^n) is a locally finite complex such that the link of each vertex is a $\Sigma^{n-1}(\Sigma^{n-1} \text{ or } \mathcal{J}^{n-1})$. A 0-star manifold (manifold with boundary) is an even (odd) numbered set of points.

A combinatorial n-cell I^n (n-sphere S^n) is a finite complex which has a linear subdivision isomorphic to some linear subdivision of an n-simplex (the boundary of an (n + 1)-simplex). A combinatorial n-manifold (nmanifold with boundary) is a locally finite complex such that the link of each vertex is an $S^{n-1}(S^{n-1} \text{ or } I^{n-1})$.

REMARK. The reader is referred to [11] for a more complete discussion of star manifolds. Combinatorial manifolds are special cases of star manifolds. If every combinatorial manifold homeomorphic to an *n*-sphere is a *combinatorial n-sphere* (and this has been proved for $n \neq 4, 5, 7$ by Smale [12]), then all *n*-star spheres are combinatorial *n*-spheres). Unfortunately, the only proof we know of this implication requires induction on *n*; hence even with Smale's result, *n*-star spheres are known to be combinatorial

¹¹ These definitions are due to Newman [11].

¹² The link of a vertex v in a complex K consists of the union of the closed simplexes σ of K not containing v but such that the join of v and σ is a simplex of K. We denote it by lk(v, K). St $(v, K) \equiv$ star of v in K is the join of v with lk(v, K).

spheres only for $n \ge 3$ (and combinatorial manifolds for $n \ge 4$).

THEOREM 5. Let M^{n-1} be an (n-1)-star manifold imbedded as a subcomplex of an n-star manifold M^n . Then M^{n-1} is locally flat in M^n .

PROOF. The theorem is evidently true for n = 1. Inductively, suppose we have proven the theorem for n = k. Let M^k be a k-star manifold imbedded as a subcomplex of the (k + 1)-star manifold M^{k+1} . Let v be a vertex of M^k . Then $lk(v, M^k)$ is a Σ^{k-1} imbedded as a subcomplex of $lk(v, M^{k+1})$ which is a Σ^k . By the induction hypothesis $lk(v, M^k)$ is locally flat in $lk(v, M^{k+1})$. Applying Theorem 4 we obtain a homeomorphism $h: lk(v, M^{k+1}) \rightarrow S^k$ such that $h(lk(v, M^k))$ is the equator S^{k-1} of S^k . We may think of S^k as the unit sphere of E^{k+1} with S^{k-1} in the hyperplane E^k . Since $St(v, M^{k+1})^{12}$ is the join of v and $lk(v, M^{k+1})$ and, since the unit ball B^{k+1} is the join of the origin and S^k , h can be extended in the obvious way to a homeomorphism $\overline{h}: St(v, M^{k+1}) \rightarrow B^{k+1}$. Furthermore, $St(v, M^k)$ is the join of v with $lk(v, M^k)$. Hence $\overline{h}(St(v, M^k)) \subset E^k$. Since each point of M^k lies in the interior of the star of some vertex of M^k we have established that M^k is locally flat in M^{k+1} . The following theorem is an immediate consequence of Theorem 5 and Theorem 3.

THROREM 6. Let M^{n-1} be an (n-1)-star manifold imbedded as a 2sided subcomplex of an n-star manifold M^n . Then M^{n-1} is bi-collared in M^n .

THEOREM 7. (Newman). Let Σ^{n-1} be an (n-1)-star sphere imbedded as a subcomplex of an *n*-star triangulation of the *n*-sphere S^n . Then Σ^{n-1} is flat in S^n .

QUESTION. Suppose K is bi-collared (n-1)-polyhedron in E^n . Is K a manifold? The answer is affirmative if and only if the link of every vertex in a triangulated n-manifold is an (n-1)-manifold. A negative answer would give a counter example to a very weak form of the Hauptvermutung for spheres.

UNIVERSITY OF MICHIGAN AND INSTITUTE FOR ADVANCED STUDY

References

- 1. L. ANTOINE, Sur l'homeomorphie de deux figures et de leurs voisinages, J. Math. Pures. Appl., 86 (1921), 221-235.
- J. W. ALEXANDER, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A., 10 (1924), 6-8.
- 3. _____, An example of a simply connected surface bounding a region which is not simply connected, Proc. Nat. Acad. Sci. U.S.A., 10 (1924), 8-10.
- 4. R. H. BING, Locally tame sets are tame, Ann. of Math., 59 (1954), 145-158.
- 5. M. BROWN, A proof of the generalized Schoen flies theorem, Bull. Amer. Math., Soc., 66 (1960), 74-76.

This content downloaded from 195.37.209.180 on Thu, 22 Oct 2020 08:42:37 UTC All use subject to https://about.jstor.org/terms

- 6. B. MAZUR, On imbeddings of spheres, Bull. Amer. Math Soc., 65 (1959), 59-65.
- E. A. MICHAEL, Local properties of topological spaces, Duke Math. J., 21 (1954), 163-171.
 E. E. MOISE, Affine structures in 3-manifolds (V), Ann. of Math., 56 (1952), 96-114.
- 9. ____, Affine structures in 3-manifolds (VIII), Ann. of Math., 59 (1954), 159-170.
- M. MORSE, A reduction of the Schoenflies extension problem, Bull, Amer. Math. Soc., 66 (1960), 113-115.
- 11. M. NEWMAN, On the division of euclidean n-space by topological n-1 spheres, Proc. Royal Soc. London, 257 (1960), 1-12.
- 12. S. SMALE, Differentiable and combinatorial structures on manifolds, Ann. of Math., 74 (1960), 498-502.